It's Official: Time Crystals Are a New State of Matter, and Now We Can Create Them
Earlier this year, physicists had put together a blueprint for how to make and measure time crystals - a bizarre state of matter with an atomic structure that repeats not just in space, but in time, allowing them to maintain constant oscillation without energy.
Two separate research teams managed to create what looked an awful lot like time crystals back in January, and now both experiments have successfully passed peer-review for the first time, putting the 'impossible' phenomenon squarely in the realm of reality.
Pete LinForth/Pixabay |
Crystals are known for their repeating structural patterns, but the atoms inside them have 'preferred' positions within the lattice. So depending on where you observe a crystal in space, it will look different - the laws of physics are no longer symmetrical, because they don't apply equally to all points in space.
With this in mind, Wilczek proposed that it might be possible to create an object that achieves an asymmetrical ground state not across space, like ordinary crystals or magnets, but across time.
In other words, could atoms prefer different states at different intervals in time?
Fast-forward a few years, and American and Japanese researchers showed that this could be possible, with one major tweak to Wilczek's proposal - in order to get time crystals flipping their states over and again, they needed to be given a 'nudge' every once in a while.
In January this year, Norman Yao described how such a system could be built, describing it to Elizabeth Gibney at Nature as a "weaker" kind of symmetry violation than Wilczek had imagined.
"It's like playing with a jump rope, and somehow our arm goes around twice, but the rope only goes around once," he says, adding that in Wilczek's version, the rope would oscillate all by itself.
Source: ScienceAlert
With this in mind, Wilczek proposed that it might be possible to create an object that achieves an asymmetrical ground state not across space, like ordinary crystals or magnets, but across time.
In other words, could atoms prefer different states at different intervals in time?
Fast-forward a few years, and American and Japanese researchers showed that this could be possible, with one major tweak to Wilczek's proposal - in order to get time crystals flipping their states over and again, they needed to be given a 'nudge' every once in a while.
In January this year, Norman Yao described how such a system could be built, describing it to Elizabeth Gibney at Nature as a "weaker" kind of symmetry violation than Wilczek had imagined.
"It's like playing with a jump rope, and somehow our arm goes around twice, but the rope only goes around once," he says, adding that in Wilczek's version, the rope would oscillate all by itself.
Source: ScienceAlert
Comments
Post a Comment